On Correspondence between Solutions of a Parametric Family of Cubic Thue Equations and Non-isomorphic Simplest Cubic Fields

نویسنده

  • AKINARI HOSHI
چکیده

We give a correspondence between non-trivial solutions to a parametric family of cubic Thue equations X − mXY − (m + 3)XY 2 − Y 3 = k where k | m + 3m+ 9 and non-isomorphic simplest cubic fields. By applying R. Okazaki’s result for non-isomorphic simplest cubic fields, we obtain all solutions to the family of cubic Thue equations for k | m + 3m+ 9.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Correspondence between Solutions of a Parametric Family of Cubic Thue Equations and Isomorphic Simplest Cubic Fields

We give a correspondence between non-trivial solutions to a parametric family of cubic Thue equations X − mXY − (m + 3)XY 2 − Y 3 = k where k | m+3m+9 and isomorphic simplest cubic fields. By applying R. Okazaki’s result for isomorphic simplest cubic fields, we obtain all solutions to the family of cubic Thue equations for k | m + 3m + 9.

متن کامل

Families of Cubic Thue Equations with Effective Bounds for the Solutions

To each non totally real cubic extension K of Q and to each generator α of the cubic field K, we attach a family of cubic Thue equations, indexed by the units of K, and we prove that this family of cubic Thue equations has only a finite number of integer solutions, by giving an effective upper bound for these solutions.

متن کامل

Effective solution of families of Thue equations containing several parameters

F (X,Y ) = m, where F ∈ Z[X,Y ] is an irreducible form of degree n ≥ 3 and m 6= 0 a fixed integer, has only finitely many solutions. However, this proof is non-effective and does not give any bounds for the size of the possible solutions. In 1968, A. Baker could give effective bounds based on his famous theory on linear forms in logarithms of algebraic numbers. In the last decades, this method ...

متن کامل

A NOTE ON THE FIELD ISOMORPHISM PROBLEM OF X + sX + s AND RELATED CUBIC THUE EQUATIONS

We study the field isomorphism problem of cubic generic polynomial X + sX + s over the field of rational numbers with the specialization of the parameter s to nonzero rational integers m via primitive solutions to the family of cubic Thue equations x − 2mxy − 9mxy −m(2m+ 27)y = λ where λ is a divisor of m(4m+ 27).

متن کامل

Cubic Thue equations with many solutions

We shall prove that if F is a cubic binary form with integer coefficients and non-zero discriminant then there is a positive number c, which depends on F, such that the Thue equation F (x, y) = m has at least c(logm) solutions in integers x and y for infinitely many positive integers m.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009